这项研究提出了一种名为混合推理策略优化(HRPO)的新方法,通过强化学习使大型语言模型能够结合离散标记和连续隐藏表示进行推理。HRPO设计了创新的门控机制,初始时以标记嵌入为主,逐渐增加隐藏状态的比例,并通过…详细
这项研究介绍了REARANK,一种基于大语言模型的创新列表式推理重排序助手。通过强化学习技术,该模型在排序前先进行明确推理,显著提升了排序性能和可解释性。仅使用179个标注样本训练的REARANK-7B在多个信息检索基准…详细
5月25日,第九届丝绸之路网络安全论坛在西安召开,深圳计算科学研究院(以下简称“深算院”)崖山数据库(YashanDB)专家受邀参会,并发表主题演讲《千年商道的数字传承:崖山数据库核心技术自主之路》,通过分享技术…详细
来自耶路撒冷希伯来大学的研究团队开发了WHISTRESS,一种创新的无需对齐的句子重音检测方法,能够识别说话者在语音中强调的关键词语。研究者基于Whisper模型增加了重音检测组件,并创建了TINYSTRESS-15K合成数据集用…详细
这项研究提出了"力量提示"方法,使视频生成模型能够响应物理力控制信号。研究团队来自布朗大学和谷歌DeepMind,他们通过设计两种力提示——局部点力和全局风力,让模型生成符合物理规律的视频。惊人的是,尽管仅使用…详细
北京交通大学与西蒙弗雷泽大学联合研发的混合神经-MPM方法实现了实时交互式流体模拟。该方法巧妙结合神经物理学与传统数值求解器,在低时空分辨率下运行神经网络并设置保障机制自动切换到MPM,显著降低计算延迟同时保…详细
这项研究介绍了EgoZero,一种创新的机器人学习系统,能够仅通过Project Aria智能眼镜捕获的人类示范数据,训练出零样本迁移的机器人操作策略。研究团队提出了一种形态无关的状态-动作表示方法,使用点集来统一人类和…详细
FLAME-MoE是卡内基梅隆大学团队开发的首个全透明混合专家语言模型研究平台,包含7个规模从3800万到17亿活跃参数的模型。它采用每层64位专家、top-8选择和2位共享专家的架构,公开所有训练数据、代码和检查点。实验显…详细
这篇论文介绍了ModernGBERT,一个由维尔茨堡大学研究团队开发的高性能德语编码器模型家族(1.34亿和10亿参数版本)。研究将ModernBERT的创新架构应用于德语,同时通过LLM2Vec方法将德语解码器模型转换为编码器以进行…详细
这项研究由人民大学与中科院联合团队开发的STAR-R1,通过创新的强化学习方法显著提升了AI的空间变换推理能力。与传统监督学习不同,STAR-R1采用细粒度奖励机制让AI学会像人类一样思考,在物体属性变化识别任务中取得…详细
这篇来自麻省理工学院研究团队的论文提出了"统一微调"(UFT)方法,创新性地融合了监督式微调(SFT)和强化式微调(RFT)的优势。传统上,SFT擅长让模型"记忆"标准答案但易过拟合,RFT则培养模型"思考"能力但依赖基础模型强…详细
这项来自麻省理工和滑铁卢大学的研究质疑了在AI文本排序中"思考过程"的必要性。研究者比较了三种文章重排模型:直接判断的StandardRR、先推理再判断的ReasonRR,以及禁用推理功能的ReasonRR-NoReason。实验结果表明,…详细
TAGS是一种创新的医学问答框架,结合了泛医和专医两种视角,通过层次化检索和不确定性验证机制提升医学AI回答的准确性。该框架由穆罕默德·本·扎耶德人工智能大学等机构的研究团队开发,无需任何模型微调即可显著提…详细
这篇研究提出了时间抽象值学习(OTA)方法,解决离线目标条件强化学习中的长期规划问题。研究团队发现现有分层方法失败的关键在于高层策略无法生成合适子目标,原因是价值函数在长期规划中估计不准确。OTA通过"选项"…详细
这项研究探索了大语言模型内部可解释特征的形成过程,分析了它们在训练过程中(时间)、模型层级间(空间)和不同规模模型(尺度)的行为变化。研究团队使用稀疏自编码器技术,成功识别出特定语义概念在神经激活中出…详细
这篇论文介绍了Mutarjim,一个仅有1.5B参数的小型语言模型,专为阿拉伯语-英语双向翻译设计。研究团队通过精心设计的两阶段训练方法,使这个小模型在多个权威基准测试中击败了参数量大20倍的模型,包括GPT-4o mini。…详细
Alchemist是一项由Yandex研究团队开发的创新方法,能将公开文生图数据转化为高效微调资源。研究者利用预训练扩散模型作为数据质量评估器,从海量图像中精选出仅3,350个高价值样本创建数据集。实验表明,这个紧凑数据…详细
南京大学研究团队提出了一种新型推理范式:进程级自适应思维模式切换(PATS),能让大型语言模型根据每步推理的难度动态调整思维策略。与传统固定策略不同,PATS在波束搜索框架中通过控制候选步骤数量(2/4/8个)模拟…详细
如果您非常迫切的想了解IT领域最新产品与技术信息,那么订阅至顶网技术邮件将是您的最佳途径之一。