HumaniBench是由Vector研究院和中佛罗里达大学联合开发的首个以人为中心的大型多模态模型评测框架,包含约3.2万对真实世界图像-问题对。与传统仅关注准确率的评测不同,它从公平性、伦理性、理解能力、推理能力、语言…详细
这篇论文介绍了美团研究团队开发的"自适应自恢复推理"(ASRR)框架,解决了大型推理模型在简单问题上过度思考的效率问题。研究发现模型具有"内部自恢复机制",能在生成答案时隐式补充推理。ASRR通过无思考模式抑制不…详细
马里兰大学和耶鲁大学研究团队提出"混合思维"(Mixture-of-Thought)框架,使大语言模型能够像人类一样通过自然语言、代码和真值表三种互补思维方式进行逻辑推理。这种创新方法在FOLIO和ProofWriter基准测试上比单一思…详细
麻省理工学院与IBM研究团队共同开发的TANGO框架通过强化学习同时训练大语言模型的生成器和验证器,实现双向互促进的能力提升。不同于传统方法使用固定验证器,TANGO的验证器随生成器共同演进,提供精确的步骤级反馈。…详细
这项研究探索了预提示工程(pPE)在强化微调(RFT)中的作用,证明不同类型的预提示可以引导语言模型习得不同行为模式。研究者将五种推理时提示策略转化为训练时预提示,发现所有pPE训练的模型都优于仅用推理时提示的…详细
这项研究首次提出了一个统一的量化感知训练(QAT)缩放定律,通过268组实验揭示了模型大小、训练数据量和量化粒度对4位量化误差的影响规律。研究发现量化误差随模型增大而减少,随训练数据增加和量化粒度变粗而增加。通…详细
上海交通大学与GAIR实验室研究团队开发了PC Agent-E,一种高效的计算机操作AI代理训练框架。通过仅使用312个人类操作轨迹并利用Claude 3.7 Sonnet进行数据增强,该模型在WindowsAgentArena-V2基准测试上取得了36.0%的…详细
这项研究比较了扩散与自回归语言模型在文本嵌入领域的表现差异。研究团队提出,自回归语言模型由于单向注意力机制而难以捕捉全局语境,而扩散语言模型的双向注意力架构天然更适合文本嵌入任务。他们开发的DIFFEMBED模…详细
LMGAME-BENCH是一项创新研究,通过六款经典游戏评估大语言模型的游戏能力。研究发现直接让模型玩游戏效果不佳,因此团队设计了感知、记忆和推理支架来解决视觉识别弱、提示敏感和数据污染等问题。测试13款顶级模型显…详细
清华大学CoAI团队发现大型推理模型的安全性存在三大失败模式:缺乏安全意识、过度思考和推理与回答不一致。研究表明,通过针对性优化提示策略,攻击成功率从77.0%降至7.0%;同时发现简短推理方式较长推理链更易学习且…详细
软思维是一种创新方法,让AI能在连续概念空间而非离散语言中思考。通过保留词汇表的完整概率分布而非选择单个词,这种无需训练的技术让大型语言模型能同时考虑多种推理路径。实验表明,软思维在数学和编程任务上提高…详细
这篇研究论文介绍了一种名为ConvSearch-R1的创新方法,它彻底改变了对话式搜索中的查询重构方式。由复旦大学等机构研发的这一技术,通过强化学习与推理能力相结合,完全摆脱了对人工标注或大型语言模型的依赖。研究采…详细
西湖大学和浙江大学研究团队提出PiFlow,一种原理驱动的科学发现框架,通过多智能体协作解决现有方法中的无方向假设和证据脱节问题。PiFlow将科学发现视为结构化的不确定性降低问题,使用最小-最大优化策略平衡探索与…详细
MMaDA是由普林斯顿大学和北京大学研究团队开发的革命性多模态AI模型,它通过统一的扩散架构、混合长思考链训练和创新的UniGRPO强化学习算法,成功实现了文本推理、多模态理解和图像生成三大核心能力的高效整合。实验…详细
清华大学与重庆大学研究团队提出Vid2World方法,成功将预训练视频扩散模型转变为交互式世界模型。该方法通过视频扩散因果化和因果动作引导两大创新,使模型能够进行自回归生成并响应动作条件。在机器人操作和游戏模拟…详细
清华大学深圳国际研究生院与阿里巴巴AMAP团队合作开发了UniVG-R1,这是一种基于推理引导的通用视觉定位模型。研究者通过构建高质量思维链数据集和应用强化学习技术,显著增强了模型处理多图像复杂指令的能力。实验表…详细
清华大学和上海人工智能实验室联合开发的AutoMat是一个突破性工具,能自动将电子显微镜图像转换为精确的晶体结构模型并预测材料性质。系统整合了模式自适应降噪、物理引导模板匹配、对称感知结构重建和机器学习性质预…详细
南洋理工大学与SenseTime Research的研究团队提出了ProxyV,一种创新算法,解决大型多模态模型处理视觉信息时的计算冗余问题。与传统方法不同,ProxyV不减少视觉标记数量,而是引入少量"代理视觉标记"替代原始标记参…详细
如果您非常迫切的想了解IT领域最新产品与技术信息,那么订阅至顶网技术邮件将是您的最佳途径之一。